BEGIN:VCALENDAR
VERSION:2.0
METHOD:PUBLISH
CALSCALE:GREGORIAN
PRODID:-//WordPress - MECv6.2.0//EN
X-ORIGINAL-URL:https://community.kavlimeetings.org/
X-WR-CALNAME:Resources and Activities
X-WR-CALDESC:
REFRESH-INTERVAL;VALUE=DURATION:PT1H
X-PUBLISHED-TTL:PT1H
X-MS-OLK-FORCEINSPECTOROPEN:TRUE
BEGIN:VEVENT
CLASS:PUBLIC
UID:MEC-728f206c2a01bf572b5940d7d9a8fa4c@community.kavlimeetings.org
DTSTART:20220120T043000Z
DTEND:20220120T060000Z
DTSTAMP:20211231T130000Z
CREATED:20211231
LAST-MODIFIED:20211231
PRIORITY:5
TRANSP:OPAQUE
SUMMARY:Elliptic Quantum Toroidal Algebra $U_{q,t,p}(\gl_{1,tor})$ and affine quiver gauge theories
DESCRIPTION:\nMS Seminar (Mathematics – String Theory)\n\n\n\nSpeaker:Hitoshi Konno (Tokyo Univ. of Marine Science and Technology)Title:Elliptic Quantum Toroidal Algebra $U_{q,t,p}(\gl_{1,tor})$ and affine quiver gauge theoriesDate (JST):Thu, Jan 20, 2022, 13:30 – 15:00Place:Zoom, please contact IPMU for zoom information. Abstract:We introduce the elliptic quantum toroidal algebra $U_{q,t,p}(\gl_{1,tor})$. After giving some representations including the level (0,0) representation realized by using the elliptic Ruijsenaars difference operator, we construct intertwining operators of the $U_{q,t,p}(\gl_{1,tor})$-modules w.r.t. the Drinfeld comultiplication.We then show that $U_{q,t,p}(\gl_{1,tor})$ gives a realization of the affine quiver $W$-algebra $W_{q,t}(\Gamma(\widehat{A}_0))$ proposed by Kimura-Pestun. This realization turns out to be useful to derive the Nekrasov instanton partition functions, i.e. the $\chi_y$- and elliptic genus, of the 5d and 6d lifts of the 4d ${\cal N}=2^*$ theories and provide a new Alday-Gaiotto-Tachikawa correspondence.\n
URL:https://research.ipmu.jp/seminar/?seminar_id=2758
ORGANIZER;CN=(IPMU) The Kavli Institute for Physics and Mathematics of the Universe at the University of Tokyo:MAILTO:
CATEGORIES:Multidisciplinary,Theoretical Physics
LOCATION:Virtual
END:VEVENT
END:VCALENDAR